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Abstract We present results from a quantum and semiclassical theoretical study of  the p,, and 
prx resistivities of a Mgh mobility 2D electron gas in the presence of a dilute random distribution 
of tubes with magnetic flux 0 and radius R,  for xbiuary values of kfR and F = eQfh. We 
report on novel Aharonov-Bohm-type oscillations in p, and pxx, relnted to degeneme quantum 
Eux tube resonances, that satisfy the selection rule (kfR)' = 4F(n + 1). with n an integer. We 
discuss possible experimental conditions where these oscillations may be observed. 

Transport in a two-dimensional electron gas (2DEG) in the presence of weak inhomogenous 
magnetic fields has recently been the subject of considerable interest, both experimental 
[l-31 and theoretical 141. This situation has been achieved experimentally by gating the 
2DEC system with a type-II superconducting layer. Abrikosov vortices are then produced by 
applying an external magnetic field perpendicular to the plane of the layers, In the ballistic 
transport regime and for low fields, when the density of vortices is small, clear modifications 
to the Hall resistance in the quantum regime have been measured [3]. Previous theoretical 
studies of this problem were restricted to the asymptotic semiclassical regime krR >> 1 [4] 
and the quantum limit kfR << 1 151. However, the experiments have covered the interesting 
intermediate krR crossover regime, with F = 1. Here, kf is the Fermi wavevector and 
F = @ / @ o  with @po = h/e  the quantum flux. 

In this letter we present a full solution to this problem for arbitrary kfR  and F .  Our 
results identify a series of novel quantum oscillations in the galvanomagnetic properties 
of the ZDEG, that appear to be within the reach of experimental confirmation. These 
oscillations can be seen at intermediate ranges of kfR and F(> 4) values and are related 
to the Aharonov-Bohm (AB) effect. The intermediate ranges of h R  are already achievable 
experimentally (e.g. [l,  31). At the end of the letter we discuss two experimental set-ups 
that have been suggested to produce larger values of F .  Here we are interested in the 
experimental situation considered in 131 where the 2D electrons move ballistically between 
the flux tubes and the dominant transport mechanism can be assumed to come from electrons 
scattering off individual flux tubes. Under these conditions, as a first approximation, we can ' 

apply the results of linear response theory in the Born approximation [6].  These results are 
formally the same as those obtdned with the Boltzmann equation 141. The weak non-local 
localization limit has already been considered experimentally and theoretically [2]. 
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There are three important physical contributions to the electronic transport properties of 
this system: (i) for finite R the Lorentz force that leads to an asymmetry in the scattering 
process; (ii) a diffractive force, relevant in the 0 < kfR c 1 regime and first considered 
by Iordanskii [7], that also yields a transversal contribution to the transport, and (iii) the 
standard AB contribution [SI. The Iordanski term in pzy, which is not taken into account in 
the differential cross section, is due to the scattering of electrons by finite radius flux tubes 
and has essentially the same origin as the AB effect [9], for both are topological in nature 
and due to the long-range properties of the vector potential. This means, as we see below, 
that the contriburion from (fi) to the Hall resistance only depends on the value of F and 
not on the specific magnetic flux profile chosen in the analysis. 

The modification to the Hall resistivity, p,,, due to the inhomogenous field can be 
represented by a Hall coefficient, cy, which is defined by the expression [3] 

where ne is the electron density and B the magnetic field. In the Bom approximation of 
the Kubo formula the transport coefficients are expressed in terms of the scattering cross 
section f(@), with q5 the electronic scattering angle [6, 41. Explicit limiting values of 
cy have been calculated in the extreme quantum cu(kyR <( 1) = (1/2nF) sin (2Fn) and 
semiclassical limits cz(kfR >> 1) = 1 [4, 51. We use these two results as constraints to be 
satisfied in our calculations. Previous studies were restricted to these two limits because 
of mathematical difficulties in the evaluation of the scattering amplitude f(@) in the whole 
k f R  and F ranges. These difficulties were identified by Khaetskii [4] and are essentially 
related to the singularity in the A6 and Iordanskir scattering in the forward direction. In the 
AB case fnB(@ - 0) - l/sin(q5/2), which would lead to an infinite LY 15, 71. 

Below we present the results of an explicit evaluation of f(@) in the whole range 
of kfR and F values. More importantly, we use these results to calculate cy and the 
magnetoresistance prx in the extended parameter range. Since the calculational problems 
arise in the forward scattering region we consider the regularized scattering amplitude 

with E the regularization parameter, which is taken to zero at the end of the calculations. 
Here 8, is the phase shift associated with the mth partial wave and can be written as 
6, = siB - i,. The 8kB = $r(lml - Im + FI) accounts for the AB phase shift, and 
&, = tan-](b,/a,) for the remaining contribution to the scattering. The coefficients a,  
and b, are obtained from the asymptotic wave function solution to the Schrodinger equation 
@(r + 00.6') = C:=-, [a, J,(krr) + b, N,(kfr)] dms, which has the required form for 
incoming plane waves and outgoing circular waves. Here J&r) and N&r) are the Bessel 
and Neumann functions of order U = /m  + FI (see [lo] for more details). 

Including the contributions (i)-(iii) we can then write the Hall coefficient as, 

The first term is the regularized Boltzmann contribution while we wrote the second 
topological term following Iordanskii [71. An important property of this expression is 
that it fully reduces to the extreme quantum and semiclassical results mentioned above. 
In this expression, as long as E is finite, there is no singularity in fe(q5) and we can 
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perform the integral. After evaluating this integral using (Z),  and from the general fact that 
[&,+I - S,] + 0 in the limit Iml -+ 00, we get thefinite result 

(4) 

This equation is one of the main results of this letter, for it provides an algorithm to calculate 
a! for arbitrary values for the parameters kfR and F .  The number of terms needed in the 
sum wid depend on the parameter range considered. 

Another way of regularizing the divergence in f($), which we used as. a further check 
of the validity of our results, is by writing 

Both expressions given in (3) and (5) lead to the same numerical results for a. Note that 
(3) and (5) differ in an important way from the expressions obtained before [4, 51, in that 
both expressions have an extra topological term (l/irF) sin(Fn) and (1 /2nF)  sin(2Fx), 
respectively. The reason'the additive terms are different is that the E + 0 and E' + 0 
limits do not commute, which shows a link between the regularization of the singularity at 
the origin and the Iordanskii force. 

The corresponding linear response theory result for the magnetoresistance Apxx is 

where r is the time between electronic flux tube collisions, within the Kubc-Bom 
approximation, and NF the concentration of magnetic flux tubes. When the magnetic field 
is zero the transport scattering time is q = ei /uf ,  with uf the Fermi velocity and ti the 
impurity scattering elastic mean free path, which is assumed to be much larger than 2R. 

We now proceed to present our results from the direct evaluation of (4) and (6). Later in 
this letter we present a physical explanation of these results using a semiclassical analysis. 
In plotting these results we have used the typical experimental parameter values given in 
the captions. In figure l(u) we show a! as a function of k R  for different values of F. The 
curve F = corresponds to an extended range of figure 3 in [3]. We note that for values of 
F < 1, a! is a monotonic function of kfR. Notice, however, that for F = i, a! can become 
negative for small values of kfR, which comes from OUT careful treatment of the extreme 
quantum region. For F 2 2 we see clear oscillations in the a! versus k f R  curves [14]. For 
F = 10, for example, we can clearly identify sharp oscillations of a! versus kfR, although 
their absolute value is smaller. The number of oscillations as a function of 4 R  is equal to 
the integer part of F ,  [F]. For F = 10, there are ten oscillations (five of them not shown 
occur for kfR > 15). Moreover, for small krR there are nmower oscillations superimposed 
on the first few oscillations. In figure l(b) we show the Hall resistivity as a function of F 
and kfR = 10. For small values of F we see the classical linear behaviour of p,, up to a 
maximum value, after which it decreases as F increases. We note that the quantum curve, 
obtained using (4). decreases non-monotonically as F increases and even becomes negative 
for values of F - 50. Finally, in figures 2(u) and 2(b) we show the corresponding results 
for Apxz(F)/pxz(0) as a function of both krR and F .  In figure Z(u) for F < 1 we see that 
Apzx(F)/pzx(0) iS a monotonic decreasing function of k f R ,  while for larger values of F 
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Figure 1. (a) Hall coefficient 01 as a 
function of kpR. Here R = 100 nm, the 
density of flux tubes is NF = IOs mm+ 
and the eleamn concentration is n. = 
3.98 x lot" ~ m - ~ ,  with Q = nR2. Here 
n denotes the flux tube resonances and m 
the angular momentum degeneracies. The 
broken cume indicates the zero value for 
a. (b)  same as in (a) for the Hall 
Rsistivily oxy as a function of F. The 
broken curve corresponds to the classical 
results. The inset shows the effective 
potential Vet( for different values of the total 
angular momentum (from top to bottom J = 
1.25. 0.5,0.2,0, -0.25, -0.75). 

the magnetoresistance becomes an oscillatory function of krR. In figure 2(b) we note the 
sharp resonancm that occur exactly at the same values of the minima in pxy. 

We now provide a physical interpretation of these results in the semiclassical limit. To 
understand the semiclassical analysis, we start by discussing the classical problem [15]. 
We note that the energy, E = fm'u:, and the total (particle + field) angular momentum, 
J = d v f b  - eQ, are constants of the motion. Here b is the impact parameter and ma 
the electron's effective mass. The impact parameter is defined as 6 = y(t  + -CO), where 
y is along the perpendicular direction of the current. The classical Hall coefficient is 
characterized by the important parameter ,9 E o,T = eQ/(2nm*ufR) = F / k r R .  Different 
scattering events have different total angular momenta and different p parameters. When 
,9 << 1, the electron trajectories are only slightly affmted by the magnetic flux tube. As 
p increases the Lorentz force becomes important until a critical pc, above which trapped 
orbits can exist. The particular quantitative value of pc depends upon the particular flux 
tube profile. For our flux-tube model Pc = 4, and the trapped circular orbits have radius 
ro = R/2p.  Both the quantum and classical scattering problems can be separated into 
angular and radial components. The radial component of the classical equation is, as usual, a 
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Figure 2. A p x x ( F ) / P ~ A O )  versus kfR (a) 
and versus F (b) for the same parameter 
values as in figure 1, with mean free 
path ei = 2pm- The inset shows the 
system considered in this letter formed by 
a Hal1 bar with a dilute random dishibution 
of perpndiculx magnetic flux hrbes of 
strensth Fag.  See text for further details. 

one-dimensional problem with effective potential, ,Vet(r, b) = [J + 8 Ji r'B(r') dr']' / 2 r z .  
Here the magnetic field of the flux tube is B(r) =.B(r)z, and we have rescaled energies 
by m*$, the angular momentum by 2rmufR = hkfR, and distances by R .  ln these units 
'J = b - p and the flux tube radius is equal to 1. In the inset of figure I(b) we show 
curves for Ve&, b) for different values of J .  We see that electrons with different J s ,  or 
impact parameters, experience different effective potentials. As the total angular momentum 
decreases, V&(r, b) develops a potential barrier with height [ J + 812/2, which decreases 
rapidly. We can show that for 8 > pc = f there is a range of J s  for which there can be 
trapped circular orbits inside the flux tube from J1 = 1/48 decreasing to Jz = 1 - b. As 
J decreases from JI to Jz, the centre of the electronic circular orbit shifts from rl = 0 to 
rz = 1 - ro = 1 - 1/28. This range of possible total angular momenta is such that the 
circular orbit stays completely within the flux tube. Classically, these circular orbits cannot 
be reached by a scattering process. However, quantum mechanically the scattering electron 
can tunnel through this potential barrier and form a quasi-bound state inside the flux tube 
for a finite time, and then escape again. In the classical calculation of the Hall resistivity 
and magnetoresistivity shown by broken curves in the figures, we computed the classical 
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differential cross-section which was used in (I), (3) and (6), in place of I f ( @ ) l z .  
In the semiclassical analysis we associate a classical circular orbit to each quasi-bound 

state. Using the standard Bohr-Sommerfeld quantization condition it is easy to show 
that the quasi-bound states are degenerate and occur at quantized values of the energy, 
E,/fiw, = (kfR)*/4F = n + $, with n an integer. This result is the analogue of the Landau 
level condition in a homogeneous magnetic field. The factor n + $ gives the total number 
of flux quanta enclosed by the circular orbit. Since the quanta of flux in the tube is equal to 
F, the quantum number n ranges from 0 to [ F ]  - 1. Moreover, the quantized total angular 
momentum, J,,, = mR, leads to a degeneracy of the n levels. This degeneracy is equal to the 
total number of quantized circular orbits which we can put inside the flux tube. From the 
range of classically allowed circular orbits mentioned above, we deduce that the allowed m 
values start at mi = [(kfR)’/4F] = n and decrease down to mz = [krR -F]+S, with 6 = 1 
if [kfR - F ]  == 0 and S = 0 if [ k R  - F ]  < 0. Therefore, we conclude that the degeneracy is 
equal to ml-m2+1 =n+l+[F-kfR] -& Inthefigures,thearrowsindicatethepositionof 
the principal quantum number n calculated using the selection rule (krR)’ = 4F(n+4) .  We 
observe that they are remarkably well aligned with some maxima and minima of pxx and pxy. 
Furthermore, we have numerically determined that each resonance in pxx and pxy occurs at 
a preferential angular momentum J,,, = mi? for some m. We arrived at this conclusion by 
evaluating the time delay r$(kfR, F )  = ul(as,/aE) = (ZR/v~)[a8,/a(krR)] and we found 
that as a function of m, t$ becomes sharply peaked for one particular value of m each time 
the pair (kfR, F )  corresponds to a resonance in the transport coefficients. In the figures 
we have indicated the values of m for the resolved resonances. The minima and maxima 
in pxy correspond to quasi-bound states due to the tunnelling of the electron into the flux 
tube. Semiclassically, as m decreases the resonances correspond to rotationally asymmetric 
orbits leading to larger p,,, as observed in figure l(b). Note that the number of resonances 
observed for a particular quasi-bound state level should be equal to the degeneracies of 
this level. However, near ml,  the amplitude of the resonances is suppressed due to the 
exponentially small tunnelling probability through the potential barrier (= [ J  + ,8]’/2). 
For example note that pxy = 0 at F = 50 in figure I(b). On the other hand, for each 
quasi-bound state level, the observed resonances with the smallest m (m = 3,0, -7; -5 1 
in figure 1(b)) correspond precisely to the value m2 derived semiclassically. 

We now consider the possible experimental conditions necessary to observe the 
galvanomagnetic oscillations described in this letter. The variation of kfR in the ranges 
of interest has already been achieved [ I ,  31. New techniques need to be developed to 
produce larger values of F inside the flux tubes. We discuss a couple of possibilities 
that have already been suggested to us. The general idea is to have the usual Hall bar 
shown schematically in the inset of figure Z(a), with the inhomogenous magnetic field 
produced by a dilute distribution of magnetic flux tubes of strength F .  One possible way 
to get larger values of F experimentally is by depositing randomly located submicron size 
superconducting dots or pillars on top of the ZDEG, in a manner similar to the way the dot 
and antidot systems have been fabricated [11, 121. Alternatively, one may drill randomly 
located submicron holes in the superconducting layer by using electron-beam lithography 
[13]. In both cases, by following a magnetic field cooling technique the magnetic flux may 
be pinned inside the dots thus trapping a large bundle of flux quanta. As in the antidot 
systems we do not expect that the oscillations found here will be significantly affected 
by temperature or Coulomb effects, provided the temperatures are sufficiently low and the 
charging energy effects are not significant for the superconducting pillars fabricated. 

In conclusion, we have presented a detailed analysis of the transport properties of 
a 2D electron-gas system in the presence of a dilute gas of randomly located magnetic 
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flux tubes for arbinmy values of kfR and F .  The main result from our analysis is the 
presence of novel m-like oscillations in the galvanomapetic properties of the system. 
These oscillations are explained in terms of the degenerate resonant levels, satisfying the 
selection rule (krR)* = 4F(n + 4). due to the effective trapping potentials produced by 
the flux tubes. A more extensive presentation of the results described here will appear 
elsewhere [16]. 

We thank C Rojas, D Goldberg, A K. Geim, A V Khaetskii, V I Falko, D Weiss and 
R Putnam for very helpful discussions. This work was supported in part by grants O M -  
N00014-92-5-1666, NSF-DMR-9211339, DE.AC02-89ER40509, DEAC02-76ER03069, 
the NSERC of Canada (MC) and by a RSDF Northeastern University grant. 

References 

[ I ]  Geim A K et a1 1989 Pir‘mn Zh. Teor. Fir. 50 359 (Engl. ms l .  1989 JETPLeft. 50 389) 
Avishai Y and Band Y B 1991 Phys. Rev. Left. 66 1761 
Kruithof G H e f ~ d  1991 Phys. Rev. Len. 67 2725 
Geim A K et a1 1987 Solid State Comun. 10 831 
Bending S J and Geim A K 1992 Phys. Rev. B 46 14912 
Geim A K et a1 1992 Phys. Rev. B 46 324 

[2] Rammer I and Shelankov A L 1987 Pkys. Rev. B 36 3135 
Bending S J. Klitzing K Von and Ploog K 1990 Pkys. Rev. Len. 65 1060 

[3] Germ A K. Bending S I and Gigorieva I V 1992 Pkys. Rev. Lett. 69 2252 and Preprint 
141 Khaetskii A V 1991 J. Phys.: Condens. Matter 3 5115 

Kuptsov D A and Moiseev M Yu 1991 1. Physique I 1165 
[SI Olariu S and Popescu I 1 1985 Rev. Mod. Phys. 57 339 ~. ~~ 

[6] Abrlkosov A A, Gorkov L P and Dzyaloshinsld I E 1965 Methods of QuMtum Field 7’heov in Srafisticnl 

[7] Iordanskii S V 1965 Z h  Teor. Fyz 49 225 ( h g l .  trml. 1966 JETP Lett. 22 160) 

[SI Aharonov Y and Bohm D 1959 Phys. Rev. 115 485 
[9] Sonin E B 1975 Zh. Tear. Fyz 69 921 (End. hansl. 1975 JIZP Lett 42 469) 
[IO] Aharonov Y et ~l 1984 Phy.s. Rev. D 29 2396 
[ I l l  Germ A K and Bending S J Private communication 
[I21 For example in Weiss D et nl 1991 Phys. Rev. Len. 66 2790; 1993 Phys. Rev. Len. 70 4118 and Weiss D 

Private communication 
1131 Goldberg D Pfivme communication 
[I41 The results of this letter were briefly presented in the 1993 March APS meeting (Bull. APS 38 401 1993). 

We then received a preprint from L Brey and H A Fertig in which they have treated some aspects of the 
problem discussed here. However, they did not observe nor explain the rich smcture of the electronic 
level degenenries which are d the core opthis lelter. 

Physics (Oxford: Pergmon) ch 7 p 323 (Hall, New Jersey 1963) 

Iordanskir S V and Koshelev A E 1986 Zh. nor. Fyz, 90 1399 mngl. u3nsI; 1986 JETP Lett. 63 820) 

[I51 Carreu M. JosB J V and Rojas C Preprint 
[ 161 Carrean M and Jose I V in preparation 


